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Abstract

Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show

that the system exhibits an electrical conductivity maximum as a function of colloid charge. We

attribute this behavior to two main competing effects: colloid effective charge saturation due to

counterion ’condensation’ and diffusion slowdown due to the relaxation effect. In agreement with

previous observations, we also find that the effective transported charge is larger than the one

determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the

surface of the colloidal particles.

PACS numbers: 82.70.Dd, 66.10.-x, 61.20.Qg,
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Charged colloidal suspensions exhibit a wide range of interesting equilibrium as well as

electrokinetic behaviors. On the equilibrium side these include charge renormalization due

to strong counterion screening [1–3], large Coulombic effects in sedimentation profiles [4],

highly tunable phase transitions [6, 7], et caetera. The dynamic behavior may be even richer

[8–11] due to the coupling of hydrodynamic and electrostatic interactions, even in the absence

of net colloidal charges [12]. The motion of charged, mesoscopically-sized particles such as

colloids or polyelectrolytes in applied electric fields, generally referred to as electrophoresis, is

relevant to numerous applications, from the detection of elementary charges [13] to molecular

biology [14] and nanofluidics [15]. As a result, the interest in elucidating fundamental

aspects of this phenomenon remains high, with computer simulations playing a significant

role [16–18]. Although the focus of such studies is often the electrophoretic mobility [17],

other transport properties such as the self-diffusion coefficient and electrical conductivity are

also important for fully characterizing these systems, and their behavior has considerable

practical consequences [19, 20]. Colloidal suspensions in the high ionic strength regime have

generally received more attention than the low salt ones [21], but the latter have recently

began to be studied more systematically, with results now available for both structural

[22] and electrokinetic properties [23]. In this letter we present molecular dynamics (MD)

simulation results for the self-diffusion coefficients and electrical conductivity of a model

charged colloidal suspension under no-salt conditions.

The system considered here contains solvent particles, colloidal particles with charge −Ze

and counterions of opposite unit charge, i.e. it is a salt-less suspension. The inter-particle

potentials consist of short range and long range (Coulomb) contributions. The short range

interactions are based on the inverse-12, ’soft-sphere’ potential,

u(r) = ε

(

d0

r

)12

(1)

, which we truncate and shift at r/d0 = 2. (We also define u(r) = ∞ for r < 0.) They are:

uCC(r) = u(r − 2RC) (2a)

uCc(r) = uCs(r) = u(r − RC) (2b)

ucc(r) = uss(r) = ucs(r) = u(r) (2c)

, where C stands for the colloidal particles, while c and s denote the counterions and solvent

particles, respectively; RC is an impenetrable colloidal particle core radius. Such potentials
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have been employed before to model neutral suspensions [24–26]. For temperatures kBT ' ε

the effective diameters corresponding to these interactions are well approximated by dc =

ds = dcs = d0, dC = 2RC + d0, and dCs = dCc = RC + d0, and satisfy additivity, dCc =

(dC + dc)/2, dCs = (dC + ds)/2. The Coulomb interactions are given by

vαβ(r) =
1

4πε0εr

qαqβ

r
(3)

where α, β = c, C. Thus, while the solvent size granularity is explicitly accounted for at the

microscopic level by the short range interactions, the (relative) dielectric constant εr, as is

usually the case [21, 27], is not. It would be difficult to perform large scale simulations with

solvent particles carrying explicit dipoles, and we do not expect that they would change the

results presented here.

We focused on fairly dilute suspensions, with colloid ’volume fraction’ φC = πnCdC
3/6 =

0.1, solvent plus counterions ’volume fraction’ φ0 = π(nc + ns)d
3
0/6 = 0.35, and with a

colloid-solvent ’diameter’ ratio dC/d0 = 10; nC , nc and ns are the number densities of the

colloidal particles, counterions and solvent particles, respectively. The first two of them

satisfy nc = ZnC due to charge conservation. We performed MD simulations of this sys-

tem in the microcanonical (NVE) ensemble for 8 different values of the colloidal charge

Z : 0, 10, 20, 30, 40, 50, 70, 100. The average temperature was set to kBT = ε. If we intro-

duce the Bjerrum length λB = e2/4πε0εrkBT and Debye screening distance associated with

counterions only, λD = 1/κD = (4πλBnc)
−

1

2 , the simulations correspond to λB/d0 = 2.32,

while λD/d0 varied between 4.23 for the Z = 10 simulations and 1.34 for the Z = 100 ones.

The particle masses were chosen to be ms = mc = m0 and mC/m0 = 1000. All simulations

were carried out with NC = 50 and Ns+Nc = 175000 in a box with periodic boundaries. The

Coulomb interactions were handled using the Ewald summation technique with conducting

boundary conditions. The time unit is t0 = d0(m0/ε)
1

2 , and the electrical conductivity unit

σ0 = 10−4 × e2t0/m0d
3
0.

After equilibration the simulations were run for 4 − 5 × 105 time steps, accumulating

structural as well as dynamic information necessary for the calculation of self-diffusion and

electrical conductivity coefficients. The self-diffusion coefficients Dδ, δ = C, c, s were deter-

mined using the velocity autocorrelation relation:

Dδ = lim
t→∞

1

3

∫ t

0

〈vδ(0) · vδ(τ)〉dτ (4)
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with no tail corrections. The conductivity calculation was done by integrating the charge

current autocorrelation,

jq(t) =

N
∑

i

qivi(t) (5a)

σ = lim
t→∞

1

V kBT

∫ t

0

〈jq(0) · jq(τ)〉dτ (5b)

The current autocorrelation integrated up to time t is denoted by σ(t).

The colloid-counterion pair correlation functions - Fig. 1 - show strong counterion strat-

ification at the surface of the colloidal particles and the formation of what is typically

designated as the Stern layer [21], with a thickness of roughly one atomic diameter. This

surface ’condensation’ effect and the associated chemical equilibrium between ’condensed’

and ’free’ counterions is expected to lead to colloid-colloid interactions corresponding to a

renormalized or effective colloid charge Zeff , which saturates at large Z [1, 2]. The present

simulations permit the assessment of this scenario at the microscopic level. To this end we

proceed to define Zeff in what appears to be the natural way, as the charge contained on the

average in a sphere centered on a colloidal particle and extending up to the first minimum

of gCc(r), i.e. inside the outer boundary of the Stern layer. The result is plotted in Fig.

1 (inset) and shows that Zeff so defined exhibits the predicted saturation behavior in the

range of ’bare’ charges Z covered in these simulations.

The self-diffusion coefficients of the colloidal particles and counterions - Fig. 2, are both

decreasing functions of Z (the self-diffusion coefficient of the solvent particles is essentially

independent of Z). Their behavior can likely be understood by extending to charged col-

loidal systems arguments usually employed in the study of the self-diffusion coefficients of

electrolyte solutions. The classic analysis due to Onsager [28] singles out the most important

contribution to self-diffusion to be the relaxation effect, i.e. the drag exercised on a moving

ion by its lagging, distorted charge atmosphere. This direct, phenomenological treatment

is particularly suitable for the colloidal particles, which are primarily screened by the small

counterions. In this case the ionic atmosphere subject to relaxation should reasonably be ex-

pected to consist only of the counterions beyond the tightly bound Stern layer, so an analysis

in terms of the effective charge Zeff is likely appropriate; we outline it briefly below following

the ideas in [28]. The screening atmosphere of a charged colloidal particle moving with ve-

locity v will lag behind a distance ζ equal with the one traveled by the particle in the time τ
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needed by the atmosphere (a charge shell of typical size λD) to equilibrate through diffusive

redistribution of the screening counterions: ζ = vτ , where τ ∝ λ2
D/Dc and Dc = kBT/µ (Ein-

stein relation for counterions), with mobility µ ∝ ηdc (Stokes relation with viscosity η). This

lag or distortion will result in a retarding force between the charged particle and its screening

atmosphere, Fr ∝ ζZ2
effe

2/λ3
Dεr. Now the Stokes drag on the colloidal particle is Fs ∝ ηdCv,

so the total drag force will be Ftotal = Fs +Fr ∝ ηdCv[1+fλB(dc/dC)Z2
eff/λD], where f is a

numerical factor. This corresponds to an effective mobility µ′ ∝ ηdC [1+f(dc/dC)Z2
effλB/λD]

which yields, according to the Einstein relation, the self-diffusion coefficient of the charged

colloidal particles:

DC =
D0

1 + f dc

dC

λB

λD

Z2
eff

(6)

The original Onsager analysis of electrolytes with equally sized anions and cations also

determines the factor f , e.g. f ' 0.1 for the charge symmetric case [28]. For the present

highly asymmetric charged colloidal system we test the above relaxation effect prediction by

simply assuming f to be a free parameter. The comparison with the MD results, shown in

Fig. 2 (inset) with f ' 0.022, indicates that the concept of renormalized charge is suitable

for describing the self-diffusive motion of charged colloids in conjunction with the relaxation

effect. This may provide a convenient avenue for estimating the self-diffusion coefficients of

such colloids over a wide range of charged states.

Electrical conductivity (σ) measurements are an important means for characterizing the

properties of charged suspensions [4, 20, 30]. Our MD simulation results reveal that, surpris-

ingly, σ exhibits a maximum as a function of the ’bare’ charge Z - see Fig. 3. The decrease

of conductivity at high Z is well established in the simulations, as further highlighted by

the time dependent conductivity σ(t) - Fig. 3 (inset). (Interestingly, the transient behavior

of σ(t) on short time scales also suggests strong frequency effects at high Z.) Theories for

electrical conduction in classical charged systems such as electrolytes have a long history

[31–33]. Unfortunately their generalization to charged colloids is difficult, and therefore

simulations such as the ones presented here may offer the best chance for understanding

the major features of conduction in such systems. We interpret the results by considering

the Nerst-Einstein relation [34] connecting σ with the densities and self-diffusion coefficients

of colloidal particles and counterions: σ = e2nCZC(Dc + ZCDC)/kBT , where we employed

charge conservation to eliminate the counterions’ density and now designate the charge of
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the colloidal particles by ZC . With the exception of ZC , which is open to interpretation,

all quantities involved are known or have been determined in the simulations. At the two

extremes ZC can be identified with either the ’bare’ charge Z, or the effective one Zeff . As

shown in Fig. 3 the first choice does not capture the character of the simulation results, as

it predicts a monotonously increasing conductivity. We also note that such an identification

is not consistent with the neglect of correlations between the charged colloidal particles and

counterions, as de facto implied in the above form of the Nerst-Einstein relation [34], and

which should be important given the surface ’condensation’ of counterions. If on the other

hand ZC is identified with Zeff , this yields an electrical conductivity with a maximum posi-

tioned almost identically with the MD simulation results. The renormalization of the colloid

charge thus seems to account qualitatively for the behavior of the conductivity, whose max-

imum appears to be the result of at least two effects: the saturation of the effective colloidal

charge and the slowdown of the colloidal particles due to the relaxation effect, operating

again at the level of the effective charge. It may seem puzzling that this analysis does not

include the electrophoretic effect, which should also be relevant for electrical conduction

[31]. We note however that the above phenomenology is incomplete, as it does not include a

characterization of the self-diffusion coefficient of the counterions. Somewhat unexpectedly,

it appears therefore that electrophoretic retardation would only contribute to conduction

indirectly, through the self-diffusion motion of the counterions, but this issue needs further

investigation. As observed in Fig. 3, the σ values calculated using Zeff still underestimate

significantly the MD results. To obtain better agreement we simply rescale Zeff , and find

that a multiplicative factor of 1.4 brings the MD simulations and Nerst-Einstein predic-

tions in close agreement. This factor is essentially identical with the one determined in [30],

which compared the effective colloidal charge obtained from structural (shear modulus) and

transport (electrical conductivity) measurements. We would like to take advantage of the

microscopic details available here to further analyze the difference between Zeff and the

effective transported charge. To this end we consider the pair correlation function between

colloidal particles and the whole suspending fluid (combined counterions and solvent parti-

cles) - gCc+s(r) - Fig. 4. This function also exhibits strong layering at short distances, and

on intermediate length scales converges to 1/(1 − φC), corresponding to a higher apparent

interstitial fluid density. We define the first peak of gCc+s(r) up to where this density is

reached (at distance rb) as a boundary fluid layer, and calculate the effective charge con-
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tained in this shell. We also determine the charge shell boundary rσ corresponding to the

observed transported charge 1.4Zeff , and find that it agrees well with rb, particularly at

higher Z - Fig. 4 (inset). Both are approximately half an atomic diameter smaller than r0,

the first minimum of gCc(r), which defines the Stern layer and Zeff .

In sum, MD simulations of a charged colloidal suspension in the salt-free regime reveal

that the system exhibits an electrical conductivity maximum as a function of the colloid

charge. We attribute this behavior to two main competing effects: colloid effective charge

saturation due to counterion ’condensation’ and diffusion slowdown due to the relaxation

effect. We also find that, in agreement with previous observations, the effective transported

charge is larger than the one determined by the Stern layer, and suggest that it corresponds

to the boundary fluid layer at the surface of the colloidal particles. Finally, it may be

interesting to study such systems at lower solvent dielectric constants, where clustering

effects may play an important role [35].

This work was performed under the auspices of the U. S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
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FIG. 1: Colloid-counterion pair correlation function for Z = 10 (dashed line), 50 (dotted line), 100

(solid line). Inset: effective colloidal particle charge Zeff as a function of the ’bare’ charge Z.
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FIG. 2: Self-diffusion coefficients of counterions (circles) and colloidal particles (diamonds) as a

function of colloid charge Z; D∗ = Dαdα/D0d0, D0 = d2
0/t0, α = c, C. Inset: Colloidal particle

self-diffusion coefficient as a function of the effective charge Zeff (symbols) and Onsager relaxation

effect relation (solid line).
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FIG. 3: Electrical conductivity of the suspension: simulations (triangles) and Nerst-Einstein rela-

tion with ’bare’ charge Z(dashed line), effective charge Zeff (dotted line) and 1.4Zeff (solid line).

Inset: time dependent electrical conductivity for Z = 50 (solid line) and Z = 100 (dashed line).
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FIG. 4: Colloid-fluid (solvent+counterions) pair correlation function gCc+s(r) - dashed line; dotted

line corresponds to 1/(1 − φC). Inset: first minimum of gCc(r) - r0 (squares), fluid layer boundary

- rb (see text) (diamonds), and charge shell boundary corresponding to 1.4Zeff - rσ(circles).
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